“There are theories that music is older than speech or language, some even argue that speech evolved from music.”
Music is a universal language. It has been one of the key ingredients in every culture since the beginning. With out knowing another cultures language you can listen to their songs they sing and dance and be able to know the underlying emotion behind it. This is a way of communicating to every human, in any culture around the world. Music causes very deep emotional responses in our body, and science is beginning to find out why.
A pioneering study has found that the human brain has a dedicated set of nerve cells that respond only to the sound of music. This contradicts the widely accepted view that musical appreciation is merely “piggybacking” on the ability to hear other everyday sounds, such as speech.
If you get chills a lot when listening to music it has to do with this part of the brain and nerves dedicated to music. Check out this article here explaining about this: If You Get Chills When…
What they found in this study:
They first had a group of people listened to different kinds of sounds. Then the researchers gathered data with medical brain scanners. Scientists found that one particular set of neurons in the auditory cortex of the brain fired their electrical impulses only when the participants in the experiment were listening to music.
Although the findings will need further investigation, the results could support the idea that there is a dedicated centre or “music box” in the brain. This centre has evolved to appreciate a melodious tune or vibrant rhythm.
Previously, researchers had thought that appreciating music was a side-effect of being able to detect and decipher other complex sounds, such as speech. However, the new study suggests music may even have played a role in the evolution of the human brain.
Josh McDermott, an assistant professor of neuroscience at the Massachusetts Institute of Technology said:
“We found evidence for a population of neurons in the adult human brain that responds selectively to music. The experiments also revealed a separate population that responds selectively to speech.
“In both cases the responses were strikingly selective – the neural response is strong when people listen to music, in one case, or speech, in another, and much less strong to every other type of sound that we tested.”
He said the two groups of neurons were in different parts of the auditory cortex – the part of the brain that processes sound, “suggesting the existence of separate pathways in the brain for the analysis of music and speech”.
How they conducted this study:
The study, published in the on-line journal Neuron, involved exposing 10 volunteers to 165 different sounds. These sounds included segments of speech and fragments of music. They also added everyday sounds such as footsteps, a car ignition or a ringing telephone.
Their brain activity was simultaneously monitored by a functional magnetic resonance imagining (fMRI) machine. The fMRI measures blood flow as a marker of neural activity. Using a sophisticated method of analysing the fMRI data, the scientists were able to identify six different populations of nerve cells in the auditory cortex. Each of these six populations of nerves responded in a unique way to different sounds, including music.
Dr. Horman-Haignere, the lead author of the findings, told the New York Times that, “the sound of a solo drummer, whistling, pop songs, rap, almost everything that has a musical quality to it, melodic or rhythmic” would activate the part of the auditory cortex called the sulcus, or major crevice.
What is still not clear, however, is whether people are born with “musical neurons” or whether nerve cells develop a “taste” for music during childhood development.
“Our results suggest the presence of a set of neurons in the adult human brain that respond selectively to music. It remains to be seen whether these neurons are present from birth,” Professor McDermott said. “It is possible that they emerge over development in response to the massive exposure most of us have to music throughout our lives.
“One way to address this would be to test whether comparable responses are present in the brains of young children, but we have not done this yet.”
More studies to come…
It is also not yet clear whether these music-specific brain cells can explain differences in musical ability. Usually music ability appears to involve both genes and upbringing.
“None of the participants in our experiment were trained musicians, and we didn’t evaluate their musical ability,” Professor McDermott explained. “One obvious next step is to repeat the experiment on musicians to see if their neuronal music selectivity differs in any way from that in non-musicians.”
Until now, many neuroscientists believed musical appreciation was simply a spin-off from the part of the brain that has evolved to understand speech or other complex sounds.
“The fact that there appears to be a neural population that responds highly selectively to music is probably some indication of the importance of music to humans, but it doesn’t speak to music’s evolutionary origins – we don’t yet know whether the neuronal tuning is to any degree innate, and thus whether there is an evolutionary trajectory to investigate.” -Professor McDermott
Clearly, there is still a lot more studies in the area of music and the brain. It is going to be very exciting when it all comes out. We have known that classical music helps children’s brain develop but these studies are showing how much more complex the brain really is. More to come on the right and left sides of the brain…